
Draft version June 8, 2023
Typeset using LATEX default style in AASTeX631

Magnetic Flux Budget in Mean-Field Dynamo Model of Solar Cycles 23 and 24

Valery V. Pipin1 and Alexander G. Kosovichev2, 3

1Institute of Solar-Terrestrial Physics, Russian Academy of Sciences, Irkutsk, 664033, Russia
2Department of Physics, New Jersey Institute of Technology, Newark, NJ 07102

3NASA Ames Research Center, Moffett Field, Mountain View, CA 94040

ABSTRACT

We investigate the magnetic flux budget in a previously developed dynamo model of Solar Cycles

23 and 24. The mean-field 3D MHD model simulates the global dynamo process and the magnetic

buoyancy instability that leads to the formation of bipolar magnetic regions (BMR) on the solar surface.

The initial perturbations of the instability correspond to the distribution of active regions observed

during the solar cycles. The toroidal and poloidal flux budgets are calculated by applying the Stokes

theorem. The results are compared with a baseline 2D dynamo model without bipolar magnetic regions

and with the synoptic observations from Kitt Peak Observatory and SoHO (Solar and Heliospheric

Observatory) and SDO (Solar Dynamics Observatory) space missions. We find that while the regions of

the high radial rotational shear at the boundaries of the convection zone are important for maintaining

the dynamo process, the toroidal magnetic flux that results in the formation of BMR is generated

by the latitudinal differential rotation. The toroidal flux generation reaches the maximum at the

poles during the solar minima, which explains the correlation between the polar field strength and the

subsequent sunspot maximum. However, we find that the generation rate of this flux strongly depends

on the radial magnetic field distribution near the solar poles. Our results suggest that while the surface

magnetic activity contributes to the poloidal magnetic flux budget, a significant part of the poloidal

flux is generated in the deep convection zone, contrary to the Babcock-Leighton solar cycle scenario.
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1. INTRODUCTION

The total magnetic flux observed on the solar surface during the 11-year activity cycles is about 1024 Mx (Schrijver

& Harvey 1984; Schrijver & Harvey 1994). Therefore, at least this amount of magnetic flux must be produced by
the large-scale dynamo in the convection zone. But how and where this flux is produced is under debate. A small

fraction of it comes from active regions. Depending on the complexity of active regions, the total flux generated by

the bipolar sunspot groups (hereafter, bipolar magnetic regions, BMR) is about 4−−10× 1022 Mx (Nagovitsyn et al.

2016; Abramenko et al. 2023). Some portion of this flux participates in the surface flux transport and in turbulent

processes contributing to the global dynamo. Following the basic ideas of Parker (1955), the solar dynamo process

cyclically transforms the large-scale poloidal magnetic field into the toroidal field and back by means of the differential

rotation and turbulent electromotive force caused by the cyclonic convective motions. Using this scenario, Cameron

& Schüssler (2015) (hereafter CS15) showed that the winding up of the surface poloidal magnetic field (given by

observations) by the differential rotation is capable of producing the toroidal flux of 1024 Mx. This requires the

toroidal flux generation rate of about 1015 Mx/sec. The winding effect of the differential rotation strongly depends

on the toroidal magnetic field strength. This effect can explain the observed relationship between the polar magnetic

flux during the solar minimum and the magnitude of the next sunspot activity cycle Schatten et al. (1978); Choudhuri

et al. (2007). Following the arguments of CS15, it is tempting to conclude that the poloidal magnetic flux produced by

the surface transport of the magnetic flux of bipolar magnetic regions (BMR) is sufficient for maintaining the dynamo

operation in the convection zone. Indeed, this idea has been implemented in the Babcock-Leighton flux transport

dynamo models (Babcock 1961; Leighton 1969; Choudhuri & Dikpati 1999; Karak et al. 2014; Kumar et al. 2019;

Cameron & Schüssler 2017).
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However, despite their simplicity and visual appeal in the magnetic ‘butterly’ diagram, models of this type are

not reproduced in the global-Sun 3D MHD simulations. The simulations support the dynamo model suggested by

Parker (1955), in which a substantial portion of the toroidal magnetic flux is generated by helical turbulence deep

in the convection zone. It is also supported by helioseismic observations of the migrating zonal flows (‘torsional

oscillations’), which reveal a dynamical pattern corresponding to the dynamo waves predicted by Parker’s theory

(Kosovichev & Pipin 2019). The self-consistent dynamical mean-field model developed by (Pipin 2018) and (Pipin &

Kosovichev 2019, 2020) explained the observed torsional oscillations, including the ‘extended’ solar cycle phenomenon

(Wilson et al. 1988). The model predicted solar-cycle variations of the meridional circulation, which were confirmed

by helioseismic observations (Komm et al. 2018; Getling et al. 2021). Further developments include modeling the

formation and emergence of bipolar magnetic regions driven by magnetic buoyancy instability (Pipin 2022; Pipin et al.

2022). Thus, this approach combines the essential elements of the Parker and Babcock-Leighton models. The results

showed that BMRs could play a substantial role in the dynamo processes and affect the strength of the solar cycles.

However, the data-driven modeling, in which the distribution of the initial perturbations that led to the development

of BMR followed the distribution of active regions observed during Cycles 23 and 24. Such a data-driven model showed

good qualitative agreement with the observations. However, the BMR effect alone could not explain the low amplitude

of Cycle 24. It was suggested that this weak cycle and the preceding prolonged minimum could be caused by a decrease

of the turbulent helicity in the convection zone during the Cycle 23 declining phase.

In this paper, we investigate the magnetic flux balance in the previously developed mean-field dynamo models of Solar

Cycles 23 and 24(Pipin et al. 2022) and compare the modeling results with the corresponding synoptic observations

of magnetic fields. The model combines the mean-field turbulent generation effects and generation effects due to the

surface BMR activity. This allows us to separate the contributions of the BMR and global dynamo processes in the

flux budget. In particular, our aim is to study the role of surface activity in the global dynamo. Section 2 briefly

describes the model. In Sections 2 and 3, we present results for the toroidal and poloidal magnetic flux budget and

compare them with the synoptic observations. Finally, a summary of the main results is presented in Section 4.

2. DYNAMO MODEL

The model developed by Pipin (2022) (hereafter, P22) and Pipin et al. (2022) (hereafter PKT) includes the full set

of mean-field MHD equations: the 3D magnetic induction equation and the energy and anelastic momentum equations

in the 2D anelastic approximation. The large-scale magnetic field is decomposed into the sum of the axisymmetric and

the nonaxisymmetric components. Its evolution is governed by the induction equation formulated in the mean-field

MHD (magnetohydrodynamics) framework of (Krause & Rädler 1980). It describes the magnetic field generation by

turbulent helical convection (the α-effect) and includes effects of small-scale magnetic helicity, turbulent pumping, and

eddy magnetic diffusivity. The magnetic helicity evolution is governed by the balance of the total magnetic helicity

density Mitra et al. (2010). The induction equation includes injection of the bipolar magnetic regions.

The model takes into account the back-reaction of dynamo effects on the global axisymmetric flow evolution. The

meridional circulation velocity and the differential rotation are not-prescribed but obtained by solving the momentum

equation, which is formulated in terms of the angular momentum balance and the azimuthal vorticity. The model

includes the heat transport in the solar convection zone, as well as the effect of rotation on the turbulent stress-tensor.

The reference profiles of mean thermodynamic parameters, such as entropy, density, temperature, convective turnover

time, and mixing length, are determined from the stellar interior model MESA (Paxton et al. 2013). The convective

RMS velocity is determined from the mixing-length approximation. Noteworthy that the large-scale flow and magnetic

field evolution results in modulation of the convective heat transport, the mean entropy variations and variations of

the turbulent mixing parameters, as well. This effect modulates the global zonal and meridional flows, resulting in the

extended solar-cycle variations of these flows. Further details can be found in our previous papers, e.g., Pipin (2022)

and Pipin et al. (2022).

The emergence of the bipolar magnetic regions (BMRs) is modeled using the mean electromotive force, which

is represented by the α and magnetic buoyancy effects acting on the unstable part of the axisymmetric magnetic

field Pipin (2022). The magnetic buoyancy velocity is modeled using the turbulent and mean-field buoyancy effects,

suggested by Kitchatinov & Rüdiger (1992); Kitchatinov & Pipin (1993); Ruediger & Brandenburg (1995), taking into

account the magnetic tension.

In the data-driven model, the latitudinal and longitudinal coordinates and the perturbation size in the BMR initiation

function are taken according to the properties of active regions from the NOAA database of solar active regions
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Table 1. The parameters of the model runs. T0 is the axisymmetric baseline model without BMR. S2 in the data-driven model
with the BMR emergence. The third column shows the magnitude of the toroidal flux in the convection zone and its generation
rate; the fourth column shows the same for the surface flux of the axisymmetric poloidal magnetic field; the column Cα shows
the scaling parameter of the global mean-field alpha-effect; the next column shows the time intervals for the corresponding Cα

values; the last column shows the duration of the activity cycles (half dynamo periods of the magnetic cycles).

Model BMR
injection

Total toroidal flux and
generation rate // [Mx],

[Mx/yr]

Total poloidal flux and
generation rate // [Mx],

[Mx/yr]

Cα Cα time
intervals,

[yr]

Cycle
Period, [yr]

T0 no injection 8× 1023, 3× 1023 1.9× 1022, 4× 1021 0.045 - 10.4

S2 data-driven
injection

1024, 4× 1023 1.9× 1022, 6× 1021 0.04
0.035
0.04

≥0
≥5 ≥11

11.2, 11.6

(https://www.swpc.noaa.gov/), as described in P22. The radial positions of the unstable points are determined through

the whole convection zone using Parker’s instability condition (Parker 1984) (see, Pipin et al. 2022). The fluctuation

of the BMR helicity parameter (which defines the tilt) is random; that is the tilt was not taken from observational

data. The data-driven model starts from the epoch of the solar minimum at the beginning of 1996. Cycles 23 and 24

have different magnitudes and lengths. Using the numerical experiments, we found that the prolonged decay of Cycle

23 can be modeled if we decrease the turbulent helicity, Cα, parameter by 20% relative to its value after five years

from the beginning of simulations (in 2001), and we increased it back by 15% in 2007. The initial value is close to the

dynamo instability threshold.

To evaluate the effects of BMRs on the dynamo processes and magnetic flux budget, we compare the data-driven

model with the axisymmetric reference model T0, calculated without the BMRs, and for a global helicity parameter

constant in time. This baseline model shows an agreement of the angular velocity profile with helioseismology results

for the angular velocity and meridional circulation. The double-cell meridional circulation is reproduced when the

variations of the Coriolis number with depth are taken into account. The secondary circulation does not significantly

affect the model results. Therefore, in this paper, we performed calculations for the models with single circulation

cells in each hemisphere.

The model parameters are given in the Table 1. We use the same notations for our runs as described in P22.

3. RESULTS

3.1. Toroidal field budget

The dynamo models of Pipin (2022) showed the importance of the BMR activity for the whole dynamo process.

To estimate variations of the toroidal magnetic flux in the dynamo region, we follow the approach of Cameron &

Schüssler (2015) (hereafter CS15) and apply the Stokes theorem to the induction equation. The time derivative of the

axisymmetric toroidal magnetic field flux in the Northern hemisphere of the Sun is calculated as follows,

∂ΦN
tor

∂t
=

∮
δΣ

(
U×B+ E

)
· dl, (1)

where ΦN
tor =

∫
Σ
BϕdS, Σ is the area of the meridional cut through the solar convection zone in the hemisphere, δΣ

stands for the contour line confining the cut, and dl is the line element of δΣ. The same can be written for the Southern

hemisphere flux ΦS
tor.
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Similarly to CS15, we estimate the RHS of Eq. (1) in the coordinate system co-rotating with the solar equator:

U0ϕ = R sin θΩ0, where Ω0 is the surface angular velocity at the equator.

∂ΦN
tor

∂t
=

∫ π/2

0

I1︷ ︸︸ ︷(
Uϕ−U0ϕ

)
Brrtdθ (2)

+

∫ rt

ri

I2︷ ︸︸ ︷(
U

(π
2 )

ϕ −U0ϕ

)
B

(π
2 )

θ dr

+

∫ rt

ri

I3︷ ︸︸ ︷(
E(0)
r −E(π

2 )
r

)
dr +

∫ π/2

0

I4︷ ︸︸ ︷(
E(t)
θ rt−E(i)

θ ri

)
dθ

here, rt = 0.99R, ri = 0.67R, are the radial boundaries of the dynamo region. The integral kernels, I1 and I2, represent

magnetic induction U×B calculated along the surface and along the equatorial radius, respectively. The kernels, I3
and I4 represent turbulent electromotive force E calculated along the radial and azimuthal parts of the integration

contour. These contributions in the flux budget equation were considered in CS15. To estimate contributions I1 and

I2, we use the angular velocity profile from our model.

Figure 1(a-c) shows the time-latitude diagrams of the integral kernel, I1, calculated for our dynamo models and

for the observation data set. In Figure 1(d), we compare the total unsigned flux of the radial magnetic field of

the models and observations. The dynamo models show qualitative agreement with the observational results. This

agreement results from the qualitative similarity of the axisymmetric magnetic field evolution in the dynamo model

and observations. Yet we see some differences. The simulated magnetic flux on the surface is about 5×1023 Mx for

Cycle 23 and 3.5·1023 Mx for Cycle 24. The generated flux is solely due to the BMR emergence. It is about factor 3 to

10 higher than the BMR flux estimated from observations by Nagovitsyn et al. (2016); Abramenko et al. (2023), who

found the flux in the range of 4− 10× 1022 Mx. The most significant difference between the models and observations

is during the growing phase of the magnetic cycles.

Figure 2 shows the latitudinal profiles of I1−3 and the radial profiles of I2−4 for model T0 for the period of the

magnetic cycle minimum. The results for I1,4 are qualitatively similar to the results CS15 derived from observational

data. This is expected because our models are in the qualitative agreement with solar observations in terms of the

time-latitude evolution of the surface radial magnetic field (’the magnetic butterfly diagram’). The diffusive decay

of the toroidal magnetic flux is captured as well because the phase shift between the evolution of the poloidal and

toroidal magnetic fields in the dynamo models corresponds to the observations.

The models show a sharp poleward increase of I1 (Fig. 2a). This effect produces the winding of the poloidal

component of the magnetic field by the latitudinal shear and generation of the toroidal field component. The effect of

the radial shear, I2, has a maximum near the bottom of the convection zone, where it is the same order of magnitude

as I1. In the main part of the convection zone, it is less by order of magnitude than near the bottom. In our previous

paper, we found that the polar magnetic field in solar observations does not increase toward the poles as much as our

models show. This affects the estimations of the budget equation terms. Figure 2a shows that the poleward increase of

I1 is substantially weaker in the case of the constant profiles of the radial magnetic field in the polar regions above 60◦

latitude. Figure3 illustrates the latitudinal profiles of I1 for the minima of Cycles 22, 23, and 24 in our dynamo models

and the observations. In all cases, we see that the observations show a step-like increase of I1 above 50◦ latitude and

almost uniform I1 is near the solar poles. The dynamo models show qualitatively similar profiles, but the distribution

of I1 is not uniform near the poles.

Figure 4a shows the time evolution of the RHS contributions of Eq. 2. Noteworthy, these variations in the Southern

hemisphere have the opposite sign (see CS15). We see that the integral of I2 is about a factor of two smaller than

the integral of I1. This is because the radial shear changes sign along the radius. Figure 4b shows phase diagrams

illustrating the budget of the toroidal flux generation rate (horizontal axis) and the loss rate (vertical axis) in our

dynamo models. The flux budget parameters are larger than those deduced by CS15 from solar observations. The

difference is because of the additional generation and loss terms included in our models. Also, the behavior of the

radial magnetic field near the poles affects the budget considerably. If we apply the constant profiles of the radial

magnetic field in the polar regions above 60◦ latitude for Model T0, we find our results become close to those by CS15.
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Figure 5 shows the axisymmetric toroidal magnetic field (images in top panels) and contour lines of the vector

potential of the poloidal field, and the corresponding toroidal flux generation rate (bottom panels) in the convection

zone in Model S2 during Cycle 23. The vector-potential contour lines correspond to the poloidal field lines. These

images and the accompanying animation illustrate the dynamo wave and help to understand the effects of the radial

and latitudinal gradients of the angular velocity on the large-scale poloidal magnetic field. Stretching of the poloidal

field lines due to the rotational gradients leads to the toroidal field generation. We see that in the lower part of the

convection zone, the radial gradient of the angular velocity stretches the closed part of the axisymmetric poloidal

magnetic field. It results in the opposite signs of the toroidal flux generation rate in the lower and upper part of the

convection zone. Simultaneously, it produces the dynamo wave propagation along the radius following the Parker-

Yoshimura rule (Yoshimura 1975). The latitudinal shear stretches the open part of the poloidal flux in the upper

part of the dynamo domain. The positive sign of the α-effect in the Northern hemisphere results in a coordinated

action of the radial and latitudinal shear in the upper part of the convection zone. It follows that the radial gradient

provides a substantial part of the toroidal flux inside the convection zone and affects the mean magnitude of the

toroidal flux there. The role of the open poloidal flux and the latitudinal shear is to control the seeding magnitude

of the subsequent cycle. This affects the correlation of the polar magnetic field parameters with the magnitude of the

toroidal field dynamo wave of the subsequent magnetic cycle.

3.2. The poloidal field flux budget

The axisymmetric poloidal magnetic field can be defined through the azimuthal component of the vector-potential,

i.e.,

BP = ∇×
(
ϕ̂A

)
.

Therefore, by applying the Stokes theorem for the poloidal flux in the Northern hemisphere, we have∫
N

BP · dS =

∫
N

∇×
(
ϕ̂A

)
· dS =

∮
ℓ

Aϕ̂ · dℓ, (3)

where ℓ is the boundary oriented along the equator line. The total surface flux of the poloidal magnetic field though

the Northern hemisphere at radius r is ΦN = 2πrA (π/2, r); and for the South hemisphere ΦS = −ΦN . The rate

change of ΦN is determined by the vector potential evolution,

∂tA = Eϕ+
(
U×B

)
ϕ
. (4)

The second term of this equation represents the effect of the meridional circulation. Both the solar observations

(Komm et al. 2015; Getling et al. 2021; Komm 2022) and our dynamo models predict Uθ ≈ 0 at the equator. It is

exactly Uθ = 0 for the nonmagnetic case. Another effect of the meridional circulations is due to the trans-equatorial

magnetic field and Ur. The latter one is exactly zero at the surface. The mean electromotive force has three different

contributions: generation, Eα
ϕ , turbulent pumping, Eγ

ϕ , and turbulent diffusion Eη
ϕ ,

Eϕ = Eα
ϕ + Eγ

ϕ + Eη
ϕ . (5)

Figure 6 shows the surface evolution of the different terms of Eq. (4) for Model S2. We find that the surface evolution

of the vector potential is dominated by the radial part of the turbulent diffusion and the surface meridional circulation,

i.e., Fig. 6(b), can be reproduced in great detail by the sum of the terms shown in Figure 6(c–d). Interesting that the

equatorial vector potential, which can be used as a proxy for the generation of the poloidal flux, is solely dependent

on the diffusive part, Eη
ϕ (see Figure 6 b,c and e). The magnitudes of Eα

ϕ and the latitudinal diffusive transport are of

the same order of magnitude, but they are considerably smaller than the other terms of Eq. (4).

The generation of the poloidal flux from the toroidal flux by means of the α-effect and the emerging bipolar magnetic

regions become essential already in a shallow layer below the surface (Pipin 2022). Following that paper, we decompose

Eα
ϕ as follows,

Eα
ϕ =

(
α
(H)
ϕϕ + α

(M)
ϕϕ

)
B + α̃ϕϕB̃ϕ + αβ ⟨B⟩ϕ, (6)

where α
(H)
ϕϕ is the hydrodynamic part of the α effect, α

(M)
ϕϕ is α-effect due to the small-scale magnetic helicity, α̃ϕϕB̃ϕ

is the azimuthal average of the nonlinear α effect of the nonaxisymmetric magnetic field, B̃ϕ, and αβ ⟨B⟩ϕ is due to

the BMR’s emergence.
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Figure 7 shows the poloidal flux generation rates for the subsurface layer at r = 0.95R. In our model, the mean-field

α-effect makes the major contribution to the poloidal magnetic field generation. On average, the emerging BMRs

contribute to the mean electromotive force with the same sign as the mean-field α-effect. The extended cycle in Eα
ϕ is

due to the axisymmetric toroidal magnetic field (see Pipin & Kosovichev 2019). In addition, we see that the large-scale

nonaxisymmetric magnetic field that results from the BMR evolution can produce a considerable contribution to the

generation of the poloidal magnetic field. This effect is caused by the nonlinear coupling of the axisymmetric and

nonaxisymmetric modes of the magnetic field and the non-linearity of the α-effect (Bigazzi & Ruzmaikin 2004).

Figure 8 shows that the large-scale evolution of the vector-potential of the poloidal field on the surface is largely

determined by the dynamo wave propagation from the depth of the convection zone. The generation and diffusive

parts of the turbulent part of the global dynamo are in close balance (cf, Figs. 8b–c).

To compare the results presented in Figure 6 with observations, we reconstruct the surface axisymmetric vector-

potential from the radial magnetic field given by observations of Kit Peak and SDO/HMI. To estimate the time

derivative of the reconstructed A, we smooth the data in time and filter out all variations with periods shorter than

three years. The obtained time evolution of A shows a qualitative agreement with the dynamo model, see Fig.9(a).

Similarly, the reconstructed ∂tA qualitatively agrees with the dynamo model.

To estimate the generation rate of the poloidal magnetic field from the surface data, we have to use an assumption

about the integral balance of the generation rate and diffusive loss of the poloidal magnetic field in the turbulent

dynamo (see Fig. 8). Results in Fig. 9a agree with the analysis of Knaack & Stenflo (2005). For this case, the

generation rate of the poloidal flux is determined by the time derivative of the vector-potential at the equator. The

previous analysis shows that this quantity is determined by diffusive propagation of the poloidal magnetic field dynamo

wave from the depth of the convection zone. The qualitative agreement of results in Fig. 6 and Fig. 8 favors the same

origin of the surface poloidal flux change in the solar dynamo. Interpretation of Fig. 8a–b in terms of the Babcock-

Leighton scenario and the 1D dynamo models like that suggested by Cameron & Schüssler (2015, 2017) is difficult to

accept. Indeed for the standard case, when the BMR, which satisfies the Hale and Joy laws, emerges at the surface,

they do not immediately contribute to the large-scale poloidal flux generation. The contribution to the solar dynamo

is related to their evolution by means of diffusion and meridional circulation. Although, the emergence of the “rogue”

BMRs (Nagy et al. 2017) may produce an immediate effect on the large-scale poloidal variation. However, they do

not represent a regular component of the solar dynamo.

Figure 10 shows the evolution of the axisymmetric poloidal magnetic field flux and its time derivative during Solar

Cycles 21–24 as deduced from the magnetic measurements from Kit Peak Solar Observatory and SDO/HMI and

the corresponding results of our dynamo model. Cycles 21 and 22 show the regular sinusoidal-like variations of the

poloidal flux and its derivative. The maximum of the poloidal flux generation rate corresponds to the maximum of

the magnetic cycle. The maxima of the magnetic cycles show strong variations in the generation rate because of the

BMRs. Presumably, these variations are due to the “rogue” active regions near the solar equator. Interesting that the

observations show that the poloidal flux generation rate fluctuated about zero for about five years at the end of Cycle

23. This corresponds to the plateau in the poloidal flux evolution. The dynamo model runs do not reproduce the

plateau, instead showing a decrease in the production rate of the poloidal flux. Understanding this plateau requires

further investigation. The plateau and the extended decay of Solar Cycle 23 are connected. There is no satisfactory

explanation for this within the solar dynamo model. In the Babcock-Leighton scenario the extended decay of Cycle 23

and weak Cycle 24 were interpreted as a result of the emergence of “rogue” active regions during the growing phase

of Cycle 23 Jiang et al. (2015). The suggestion of Dikpati et al. (2010) relates these phenomena to variations in the

meridional circulation structure.

4. DISCUSSION AND CONCLUSIONS

Generation and decay of the axisymmetric toroidal and poloidal magnetic field fluxes govern the solar dynamo.

Motivated by the results of Cameron & Schüssler (2015), we analyzed the components of the dynamo budget using

solar observations and results of the mean-field dynamo models. One of the findings of CS15 was the crucial role of

the surface differential rotation in the generation of the axisymmetric toroidal magnetic field of the Sun. Our results

suggest that a subdominant role of the radial shear in the solar dynamo can result from the sign variation of the

radial gradient of the angular velocity in the bulk of the convection zone. Nevertheless, it is important to maintain the

average level of magnetic activity in the dynamo domain. Results of the 3D dynamo model show a higher generation

rate of the toroidal flux by solar differential rotation than the axisymmetric 2D models.
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We find that the toroidal flux generation rate by the surface differential rotation depends strongly on the radial

magnetic field profile in the polar regions. Observations show that the radial magnetic field is almost uniform near

solar poles during epochs of the solar minima, while the dynamo models show a sharp increase in the toroidal flux

generation rate toward the poles. The toroidal flux generation rate by the latitudinal shear reaches the maximum at

the poles both in the observations and dynamo models for the time of solar activity minima. This property explains

the relative success of the correlation between the polar magnetic field strength and the magnitude of the subsequent

magnetic cycle for the solar cycle predictions (Schatten et al. 1978; Choudhuri et al. 2007). Our results suggest that

the correlation strength can depend on the profile of the radial magnetic field near solar poles. The long-term direct

measurements of the large-scale solar magnetic fields in polar regions can help to resolve the issue.

The magnitude of the integral parameters for the surface poloidal magnetic field flux and its generation rate agree

with the estimation of Cameron & Schüssler 2023. Our analysis suggests that a considerable part of the generated

axisymmetric poloidal magnetic field flux comes from deep layers of the convection zone. The interpretation of the

surface poloidal magnetic field evolution solely in terms of the Babcock-Leighton scenario, in which the axisymmetric

poloidal flux is generated in situ of the BMR emergence, is difficult to accept. In the standard case, the emerging

BMRs that follow the Hale and Joy laws do not immediately contribute to the large-scale poloidal flux generation.

Their contribution is related to their subsequent evolution by means of diffusion and meridional circulation. The

dynamo model shows that most part of the poloidal flux generation is due to the effect of the radial diffusion and

propagation of the dynamo wave from the depth. Although the so-called “rogue” BMR (Nagy et al. 2017) can produce

an immediate effect on the large-scale poloidal variation, they do not represent the regular component of the solar

dynamo.
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Figure 1. Panels a) and b) show the time-latitude diagram of the near-surface toroidal magnetic field (contours in the range
of ±1kG) for Models T0 and S2; the background color shows the flux generation rate of the toroidal magnetic field from the
surface differential rotation, i.e., integral kernel I1 of Eq. (2); the green squares in panel (b) mark positions of the initiated BMR;
c) the same as in panel (b) for the axisymmetric magnetic field from the Kitt Peak Observatory (KPO) and SDO/HMI synoptic
maps; d) shows the total unsigned flux of the radial magnetic field at the surface for the dynamo models and observations, where
KP-HMI, AX marks results for the axisymmetric magnetic field obtained from the combined data of KPO and SDO/HMI, and
the ”S2,AX” curve shows the axisymmetric magnetic flux variations calculated from the nonaxisymmetric dynamo model.
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Figure 2. Estimation of contributions to the flux budget Eq. (2) for the cycle minima. The red lines in panel a) show I1 for
the assumption of constant Br in high-latitude regions above 60◦ latitude.
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Figure 3. Estimation of contributions of the toroidal magnetic field generation rate from the surface magnetic field, see Eq. (2),
for the minima of Cycles 22, 23, and 24 in our dynamo models and the observations.
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Figure 4. a) Time evolution of the RHS contributions of Eq.2 for Model T0; b) the phase diagram of the toroidal flux generation
(horizontal axis) and loss (vertical axis) rates; the black curve shows Model T0, green line - the same run (T0a) where the radial
subsurface shear (region r=0.9-0.99R) is neglected, the yellow curve shows the budget for Model T0, where we assume that Br

is constant above 60◦ latitude (S0(s),T0(s)), the blue and red curves show Models S0 and T0 and the magenta line shows Model
S0, the budget of which includes only the surface contributions (I1,3). Circles mark the model starting points.

a)

b)

Figure 5. a) The evolution of the axisymmetric toroidal magnetic field (images) and the vector-potential of the poloidal field
during Cycle 23 in Model S2, illustrating the dynamo wave propagation in the convection zone; b) the corresponding toroidal
flux generation rate (see animation of this Figure in the online version).
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Figure 6. Panels a) and b) show the time-latitude diagrams of vector-potential A and its derivative ∂tA. Other panels show
the same for the different terms in the vector-potential evolution (see Eq.(4)); c) shows the effect of the radial diffusion; d)
shows the effect of the meridional circulation; e) and f) show the effect of the latitudinal diffusion and the α-effect generation
term Eα

ϕ , respectively (noteworthy, they are of an order of magnitude smaller than other terms of the vector-potential evolution
equation).
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a) b)

Figure 7. Time-latitude diagrams of the poloidal magnetic field generation rates at r = 0.95R, a) shows the total Eα
ϕ , b) shows

the effects due to the BMR activity and the nonaxisymmetric magnetic field, α̃ϕϕB̃ϕ + αβ ⟨B⟩ϕ (note that the time scales of

α̃ϕϕB̃ϕ are longer than those for αβ ⟨B⟩ϕ) ;
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a) b) c)

Figure 8. a) Snapshots of the vector-potential (streamlines of the poloidal magnetic field) and its time-derivative (color image)
for the different phases of the modeled Cycle 23 in the meridional cross-section of the convection zone; b) the same as a) and
color image shows contributions of the latitudinal meridional circulation, and all turbulent effects, except the generation term,
Eα
ϕ ; c) shows the toroidal magnetic field contours in the range of ±2kG and the color images show the generation effect, Eα

ϕ
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Figure 9. The same as in Figure 6 a) and b) for the KPO and SDO/HMI data set. Panel a) shows the evolution of the
axisymmetric vector-potential; b) shows the estimation of ∂tA (for this quantity, we smooth A and filter out all harmonics with
periods shorter than three years).

[M
x]

[M
x/
yr
]

yr yr
a) b)

Figure 10. a) The black lines show the poloidal flux in the Northern hemisphere (left y-axis) as deduced from the observations
(solid black line) and the dynamo models (color lines); b) the corresponding time derivatives of the poloidal flux.
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